
AD-A174 623 APPROXIMATE AND LOCAL LINEARIZABILITY OF NONLINEAR 1/1
DISCRETE-TIME SYSTEMS(U) TEXAS UNIV AT AUSTIN DEPT OF
ELECTRICAL AND COMPUTER ENGINEER H LEE ET AL 1986
UNCLASSIFIED AFOSR-TR-86-0551 F49602-82-C-0033 F/G 9/3 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

1986 ACC

APPROXIMATE AND LOCAL LINEARIZABILITY OF NONLINEAR
DISCRETE-TIME SYSTEMS

Hong-Gi Lee and Steven I. Marcus
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Abstract

We consider a single-input nonlinear discrete-time system of the form

 $\Sigma \colon x(t+1) = f(x(t),u(t))$

where $x \in \mathbb{R}^N$, $u \in \mathbb{R}$, and $f(x,u): \mathbb{R}^{N+1} \to \mathbb{R}^N$ is a C^∞ \mathbb{R}^N -valued function. Necessary and sufficient conditions for approximate linearizability are given for Σ . We also give a sufficient condition for local linearizability. Finally, we present analogous results for multi-input nonlinear discrete-time systems.

AIR FORTE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRINCHITTAL TO DITC
This technical report has been reviewed and is
approved for sublic release IAW AFR 190-12.
Distrib Clon is unlimited.
MATTHEY J. KETTER
Chief. Technical Information Division

Approved for public release; distribution unlimited.

ON THE CO

*This research was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-84-0089, in part by the National Science Foundation under Grant ECS-8412100, and in part by the Joint Services Electronics Program under Contract F49602-82-C-0033.

 CLASSIFICATI	ON OF THE	SPACE

1a REPORT				REPORT DOCUME					
1a REPORT SECURITY CLASSIFICATION					16. RESTRICTIVE MARKINGS				
Unclassified 2a SECURITY CLASSIFICATION AUTHORITY					3. DISTRIBUTION/AVAILABILITY OF REPORT				
26. DECLASSIFICATION/DOWNGRADING SCHEDULE				Approved for public release; distribution unlimited.					
4. PERFORMING ORGANIZATION REPORT NUMBER(S)					5. MONITORING ORGANIZATION REPORT NUMBER(S)				
4. PERFOR	MING ORGAN	IZATION F	EPORT NUM	BER(S)			-		
					AFOSI	R.TR. 8	6 - 05	51	
64 NAME C	F PERFORM	NG ORGAN	IZATION	Bb. OFFICE SYMBOL (If applicable)	78. NAME OF MONI	TORING ORGAN	ZATION		
University of Texas at Austin					AFOSR/NM				
Sc. ADDRE	S (City, State	and ZIP Co	ie)	L	7b. ADDRESS (City,	State and ZIP Cod	ie)		
Unive	rsity of	Texas a	ıt Austin	, Dept. of Elect	rical Blde	410			
and C	omputer l	Engineer	ing	, = -p-00		ng AFB, DC	20332-6448	}	
	n. Texas		10	B. OFFICE SYMBOL	9 PROCUSEMENT	NSTRUMENT IO	ENTIFICATION	NUMBER	
ORGAN	IZATION	3,01,00	••	(If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AFOSR NM				AFOSR-84-00			·		
Sc. ADDRE	\$8 (City, State	and ZIP Co	ie)		10. SOURCE OF FUI	1			
Bolli	ng Air Fo	orce Bas	e		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK U	
Washi	ngton, DO	20332	-6448		61102F	2304	AI		
11. TITLE (Include Security Classification) "Approximate and Local Lineari					İ		1		
	KIMATE AT		Lineari	zability of Nonl	nnear Discret	e-Time Syst	tens"		
Hong-	Gi Lee ar	d Steve	n I. Mar	cus					
	13a TYPE OF REPORT 13b. TIME O			OVERED	14. DATE OF REPORT (Yr., Mo., Dey)			15. PAGE COUNT 29 (twenty-n	
repri	MENTARY N		FROM	10	1986		29	(twenty-n	
FIELD	GROUP	\$U	B. GA.						
		 		ł					
				didentify by block number		vetem of th	e form		
where Neces given	We consider Σ : \times	der a si x(t+1) = ueIR, ai suffic We also	ingle-inp f(x(t), nd f(x,u) ient cond give a	but nonlinear divided $u(t)$: $\mathbb{R}^{N+1} \to \mathbb{R}^{N}$ is ditions for approximation \mathbb{R}^{N+1} is sufficient conditions.	screte-time s a C [∞] IR ^N -value oximate linea ition for loc	ed function rizability al lineariz	n. are zability.		
where Neces given Final	We consider Σ : $x \in \mathbb{R}^N$, $x \in \mathbb{R}^N$, $x \in \mathbb{R}^N$	der a si x(t+1) = ueIR, ai suffici We also resent a	f(x(t), f(x,u) ient conc give a analogous	out nonlinear divu(t)) $: \mathbb{R}^{N+1} \to \mathbb{R}^{N} \text{ is}$ Sitions for approximations for must be sufficient conductions.	screte-time s a C [∞] IR ^N -value oximate linea ition for loc lti-input non	ed function rizability al lineariz linear disc	n. are zability. crete- time	systems.	
where Neces given Final 20. OISTRI	we consider Σ : $x \in \mathbb{R}^N$, x	der a si x(t+1) = ueIR, ai suffic We also resent a	f(x(t), f(x,u) ient conc give a analogous	out nonlinear divided $u(t)$: $\mathbb{R}^{N+1} \to \mathbb{R}^{N}$ is dittions for approximately sufficient conditions for must be set of the se	screte-time s a C [∞] IR ^N -value oximate linea ition for loc	ed function rizability al lineariz linear disc	n. are zability. crete- time	systems.	
where Neces given Final 20. OISTRI	we consider Σ : $x \in \mathbb{R}^N$, x	der a si x(t+1) = ueIR, ai suffic We also resent a	f(x(t), f(x,u) ient conc give a analogous	out nonlinear divu(t)) $: \mathbb{R}^{N+1} \to \mathbb{R}^{N} \text{ is}$ Sitions for approximations for must be sufficient conductions.	screte-time s a C [∞] IR ^N -value oximate linea ition for loc lti-input non	ed function rizability al lineariz linear disc URITY CLASSIFI	n. are zability. crete- time	systems.	
where Neces given Final 20. OISTRIC	we consider Σ : $x \in \mathbb{R}^N$, x	der a si x(t+1) = ueIR, ai suffic We also resent a ILABILITY TED 🖫 SA	f(x(t), f(x,u) fent conc give a analogous OF ABSTRAC	out nonlinear divided $u(t)$: $\mathbb{R}^{N+1} \to \mathbb{R}^{N}$ is dittions for approximately sufficient conditions for must be set of the se	a C [∞] IR ^N -value oximate linea ition for loc lti-input non 21. ABSTRACT SEC Unclassified	ed function rizability al lineariz linear disc URITY CLASSIFI	n. are zability. crete- time		
where Neces given Final 20. OISTRIC	We consider Σ : $x \in \mathbb{R}^N$, x	der a si x(t+1) = ueIR, ai suffic We also resent a ILABILITY TED 🖫 SA	f(x(t), f(x,u) fent conc give a analogous OF ABSTRAC	out nonlinear divided $u(t)$: $\mathbb{R}^{N+1} \to \mathbb{R}^{N}$ is dittions for approximately sufficient conditions for must be set of the se	a C [∞] IR ^N -value oximate linea ition for loc lti-input non 21. ABSTRACT SEC Unclassifie	ed function rizability al lineariz linear disc URITY CLASSIFI	are zability. crete- time	MBOL	

Introduction

Auctiment

We consider a single-input nonlinear discrete-time system of the form

$$\Sigma \colon x(t+1) = f(x(t),u(t)) \tag{1}$$

where $x \in \mathbb{R}^N$, $u \in \mathbb{R}$, and $f(x,u): \mathbb{R}^{N+1} \to \mathbb{R}^N$ is a C^{∞} \mathbb{R}^N -valued function. Many authors have studied (local or global) linearization (Cheng et. al. 1985, Hunt and Su 1981, Jakubczyk and Respondek 1980, Krener 1973, Su 1982) and approximate linearization (Krener 1984) by state feedback and coordinate change for nonlinear continuous-time systems. In this paper we discusses necessary conditions and sufficient conditions for local linearization and approximate linearization by state feedback and coordinate change for nonlinear discrete-time systems. Other related work on nonlinear discrete-time systems can be found in (Grizzle 1985a, 1985b, Grizzle and Nijmeijer 1985, Monaco and Normand-Cyrot 1983a, 1983b). Kymada: materia (material). <u>Definition 1</u>: A point (x_e, u_e) such that $f(x_e, u_e) = x_e$ is called an equilibrium point.

Now consider the following linear discrete-time system Σ_0 .

$$\Sigma_0$$
: y(t+1) = Ay(t) +bv(t) = g(y(t),v(t)),

where

(N×1 matrix)

'odes

Similar to the continuous-time case (Krener 1984, Su 1982), we can define local linearizability and approximate linearizability for a discretetime system. Let (x_e, u_e) be an equilibrium point of Σ .

Definition 2: Σ is said to be <u>locally linearizable</u> at (x_e, u_e) if there exist an open neighborhood $U(=\mathbb{R}^{N+1})$ of (x_e, u_e) and a diffeomorphism $T:U \to T(U)$ such that (i) $\overline{T} = (T_1, T_2, \dots, T_N)$ are functions of x_1, x_2, \dots, x_N only, (ii) $T(x_e, u_e) = 0_{(N+1)}x_1$, and (iii) $\overline{T} \circ f = g \circ T$.

If we let $(y(t)^Tv(t))^T = T(x(t),u(t))$, then y(t) and v(t) satisfy Σ_0 . Definition 2 indicates that we want to find a diffeomorphism T such that the diagram in Figure 1 commutes. Once we find such a diffeomorphism, we can apply linear system theory instead of nonlinear system theory. Definition 3: Σ is said to be approximately linearizable with order ρ if there exist an open neighborhood $U(\subset \mathbb{R}^{N+1})$ of (x_e, u_e) and a diffeomorphism $T:U \to T(U)$ such that (i) $\tilde{T} = (T_1, T_2, \dots, T_N)$ are functions of x_1, x_2, \dots, x_N only, (ii) $T(x_e, u_e) = 0$ $(N+1)x_1$, and (iii) $\tilde{T} \circ f = g \circ T + 0(x-x_e, u-u_e)^{\rho+1}$.

Thus, in Definition 3 we consider the following nearly linear discretetime system:

$$\Sigma_0'$$
: y(t+1) = Ay(t) +bv(t) +0(x-x_e,u-u_e)^{p+1}

where the N×N matrix A and N×1 matrix b are the same as Σ_0 . Clearly, local linearizability at (x_e, u_e) implies approximate linearizability with arbitrary order.

In Section II, some background material is reviewed and notations are defined. In Section III, necessary and sufficient conditions for approximate linearizability will be given for the system (1). Also, we will give a sufficient condition for local linearizability. We can define local linearizability and approximate linearizability for multi-input discrete-time systems similarly to Definitions 2 and 3. Then the multi-input case will be discussed in Section IV.

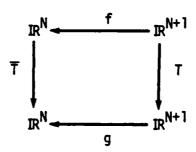


Figure 1

II. Preliminaries

In this section, notations and definitions to be used later will be mentioned. The Kronecker product is very useful in the field of matrix calculus (Graham 1981). First, define the Kronecker product @ by

where $a_{i,j}$ is the (i,j)-component of the p×q matrix A.

Define the derivative of a matrix with respect to a matrix by

$$D_{A} B = \begin{bmatrix} \frac{\partial}{\partial a_{11}} B & \frac{\partial}{\partial a_{12}} B & \cdots & \frac{\partial}{\partial a_{1q}} B \\ \frac{\partial}{\partial a_{21}} B & \frac{\partial}{\partial a_{22}} B & \cdots & \frac{\partial}{\partial a_{2q}} B \\ \vdots & \vdots & & \vdots \\ \frac{\partial}{\partial a_{p1}} B & \frac{\partial}{\partial a_{p2}} B & \cdots & \frac{\partial}{\partial a_{pq}} B \end{bmatrix} (mp) \times (nq)$$

We also define

$$D_A^0 B = B$$
, $D_A^1 B = D_A B$, and $D_A^{i+1} B = D_A (D_A^i B)$ for $i \ge 1$.

Let h(x) be a scalar real valued function of $x \in \mathbb{R}^N$. Then $(D_x^k h)(x)$ and $(D_x^k h)(x)$ are $N^k \times 1$ and $1 \times N^k$ vectors, respectively.

<u>Fact</u> (Vetter 1970,1971): Using the definition of Kronecker product and derivative operations on matrices, Taylor's formula can be expressed by

$$h(x) = h(0) + \sum_{k=1}^{\ell} \frac{1}{k!} (D_{x}^{k} h(x))_{x=0} (x \otimes x \otimes ... \otimes x) + R_{\ell+1}(x^{*}),$$

where $R_{\ell+1}(x^*)$ is a remainder term.

Now define the $N^k \times N^k$ permutation matrix U_{i_1,i_2,\dots,i_k} as follows: the $(a_{i_1}-1)N^{k-1}+(a_{i_2}-1)N^{k-2}+\dots+(a_{i_{k-1}}-1)N+a_{i_k}-th$ column of U_{i_1,i_2,\dots,i_k} is the $(a_1-1)N^{k-1}+(a_2-1)N^{k-2}+\dots+(a_{k-1}-1)N+a_k-th$ column of $N^k \times N^k$ identity matrix $(I_{N^k \times N^k})$, for $1 \le a_1,a_2,\dots,a_k \le N$ (the $\{a_i\}$ are related to the "base N" representation of the column). Here $\{i_1,i_2,\dots,i_k\}$ is a permutation of $\{1,2,\dots,k\}$. For example, when N=2 and k=3,

$$U_{123} = I_{8 \times 8}$$

and

Let A be a $p \times N^k$ matrix. Define the operator \bullet by

$$\bigoplus_{k!} A = A \left(\sum_{\substack{\text{all permutations} \\ \{i_1, i_2, \dots, i_k\} \text{ of } \{1, 2, \dots, k\}}} U_{i_1, i_2, \dots, i_k} \right)$$

For example, when A is a $p \times N^3$ matrix,

$$\bullet$$
 A = A($U_{123} + U_{132} + U_{213} + U_{231} + U_{312} + U_{321}$).

Let

$$\left\{ \left(\frac{\partial f}{\partial u} \right)_{(0,0)}, \left(\frac{\partial f}{\partial x} \right)_{(0,0)}, \left(\frac{\partial f}{\partial u} \right)_{(0,0)}, \dots, \left(\frac{\partial f}{\partial x} \right)_{(0,0)}^{N-1}, \left(\frac{\partial f}{\partial u} \right)_{(0,0)} \right\}$$

be linearly independent; that is, they form a basis for \mathbb{R}^N . Define $\zeta:\mathbb{R}^N\to\mathbb{R}$ by $\zeta(v)=\alpha_N$, where v is a $1\times N$ row vector and

$$v^{T} = \sum_{i=1}^{N} \alpha_{i} (\frac{\partial f}{\partial x})_{(0,0)}^{i-1} (\frac{\partial f}{\partial u})_{(0,0)}.$$

That is, $\zeta(v)$ is the last coefficient of v^T with respect to the basis $\{w_1, w_2, \dots, w_N\}$, where $w_i = (\frac{\partial f}{\partial x})_{(0,0)}^{i-1}(\frac{\partial f}{\partial u})_{(0,0)}, 1 \le i \le N$. Also define $\tilde{\zeta}$: $IR^{p \times N} \to IR^p$ by

$$\tilde{\zeta}(V) = \begin{bmatrix} \zeta(v_1) \\ \zeta(v_2) \\ \vdots \\ \zeta(v_p) \end{bmatrix}$$

where v_i is the i^{th} row of V.

III. Single-Input Case

Let

$$\hat{f}^{\dagger}(x,u) = f(x,u),$$

$$\hat{f}^{i+1}(x,u) = f(\hat{f}^{i}(x,u),0), \text{ for } 1 \le i \le N-1.$$

 $\hat{f}^i(x,u)$ represents the effect of an input u at t=0 on the state at t=i. $\hat{f}^i(x,u)$ is essential for solving many problems arising in discrete time nonlinear systems. Lemma 1: Σ is locally linearizable at (0,0) if and only if there exists a C^∞ function h:W($\subset \mathbb{R}^N$) $\to \mathbb{R}$ such that (i) W is an open neighborhood of $0 \in \mathbb{R}^N$, (ii) $D_{ij}(h \circ \hat{f}^i) \equiv 0$ on some neighborhood of $0 \in \mathbb{R}^{N+1}$, for $1 \leq i \leq N-1$,

(iii)
$$\det \begin{bmatrix} \left(\frac{\partial h}{\partial x}\right)_{x=0} \\ \left(\frac{\partial (h \circ \hat{f})}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial (h \circ \hat{f})}{\partial x}\right)_{(0,0)} \end{bmatrix} \neq 0,$$

(iv)
$$(D_u(h \circ \hat{f}^N))_{(0,0)} \neq 0$$
, and (v) $h(0) = 0$.

<u>Proof:</u> Necessity: Suppose that Σ is locally linearizable. Thus we have a diffeomorphism T. Let $h(x) = T_1(x)$. (Since $T_1(x,u)$ depends only on x, we can write $T_1(x)$ instead of $T_1(x,u)$.) Note that $T_2 = T_1 \circ f$. Since $D_u(T_2) \equiv 0$ on some neighborhood of the origin, $D_u(T_1 \circ f) \equiv 0$ on some neighborhood of the origin. From now on, for convenience, we will omit "on some neighborhood of the origin". Note that $T_3 = T_2 \circ f = T_1 \circ \hat{f}^2$. (Actually, we can write $T_3 = T_1 \circ f^2$, because $T_1 \circ f$ depends only on x. But \hat{f}^2 is used, for consistency of notation.) Since $D_u(T_3) \equiv 0$, $D_u(T_1 \circ \hat{f}^2) \equiv 0$. Proceeding in this manner, since $T_N = T_{N-1} \circ f = \dots = T_1 \circ \hat{f}^{N-1}$ and $D_u(T_N) \equiv 0$,

 $D_u(T_1 \circ \hat{f}^{N-1}) \equiv 0$. Thus we have shown that $D_u(T_1 \circ \hat{f}^i) \equiv 0$, for $1 \leq i \leq N-1$. Since T is a diffeomorphism, $T_i = T_1 \circ \hat{f}^{i-1}$ for $2 \leq i \leq N+1$, and T_1, T_2, \dots, T_N depend only on x,

$$\det \begin{bmatrix} \left(\frac{\partial h}{\partial x}\right)_{x=0} \\ \left(\frac{\partial (h \circ \hat{f})}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial (h \circ \hat{f}^{N-1})}{\partial x}\right)_{(0,0)} \end{bmatrix} \neq 0$$

and $D_u(h \circ \hat{f}^N) \neq 0$. Since $T_1(0,0) = 0$, h(0) = 0.

Sufficiency: Suppose that there exists $h: \mathbb{R}^N \to \mathbb{R}$ satisfying the given conditions. Let $T_i(x) = h \circ \hat{f}^{i-1}$, for $1 \le i \le N+1$. Then it can be easily checked that $\overline{T} \circ f = g \circ T$ and T(0,0) = 0. Since $\det((\frac{\partial T}{\partial (x,u)})_{(0,0)}) \ne 0$, there exists an open neighborhood U of (0,0) such that $T: U \to T(U)$ is a diffeomorphism by the inverse function theorem. (Q.E.D.)

Let $\xi = \begin{pmatrix} x \\ u \end{pmatrix}$.

Lemma 2: Σ is approximately linearizable with order ρ if and only if there exists a C^{∞} function h:W(\subset IR^N) +IR such that (i) W is an open neighborhood of $0 \in \mathbb{R}^N$, (ii) $(D^j_{\xi}D_u(h \circ \hat{f}^i))_{\{0,0\}} = 0_{\{N+1\}}j_{\times 1}$ for $1 \le i \le N-1$ and $0 \le j \le \rho-1$,

(iii)
$$\det \begin{bmatrix} \left(\frac{\partial h}{\partial x}\right)_{x=0} \\ \left(\frac{\partial (h \circ \hat{f})}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial (h \circ \hat{f}^{N-1})}{\partial x}\right)_{(0,0)} \end{bmatrix} \neq 0,$$

(iv) $(D_u(h \circ \hat{f}^N))_{(0,0)} \neq 0$, and (v) h(0) = 0.

<u>Proof</u>: Necessity: Suppose Σ is approximately linearizable with order ρ .

Let $h(x) = T_1(x)$. By definition, $T_1 \circ f(x,u) = T_2(x) + 0(x,u)^{\rho+1}$. So $(D_{\xi}^{j}(D_{u}(h \circ f))_{(0,0)} = 0$ for $0 \le j \le \rho-1$. Note that $T_1 \circ \hat{f}^2 = T_2 \circ f + 0(x,u)^{\rho+1}$. Since $T_2 \circ f(x,u) = T_3(x) + 0(x,u)^{\rho+1}$ by definition, $T_1 \circ \hat{f}^2 = T_3(x) + 0(x,u)^{\rho+1}$. Thus $(D_{\xi}^{j}D_{u}(h \circ \hat{f}^2))_{(0,0)} = 0$ for $0 \le j \le \rho-1$. Proceeding in this manner, we can show that $(D_{\xi}^{j}D_{u}(h \circ \hat{f}^i))_{(0,0)} = 0$ for $1 \le i \le N-1$ and $0 \le j \le \rho-1$. Note that $(\frac{\partial T_i}{\partial x})_{(0,0)} = (\frac{\partial}{\partial x}(h \circ \hat{f}^{i-1}))_{(0,0)}$ for $1 \le i \le N$. Since

$$\det \begin{bmatrix} \left(\frac{\partial T_1}{\partial x}\right)_{(0,0)} \\ \left(\frac{\partial T_2}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial T_N}{\partial x}\right)_{(0,0)} \end{bmatrix} \neq 0, \quad \det \begin{bmatrix} \left(\frac{\partial h}{\partial x}\right)_{x=0} \\ \left(\frac{\partial (h \circ f)}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial (h \circ f^{N-1})}{\partial x}\right)_{(0,0)} \end{bmatrix} \neq 0.$$

It can be easily shown that $T_1 \circ \hat{f}^N(x,u) = T_{N+1}(x,u) + 0(x,u)^{\rho+1}$. Thus $(D_u(h \circ \hat{f}^N))_{(0,0)} = (D_u T_{N+1}(x,u))_{(0,0)} \neq 0$. Finally, $h(0) = T_1(0) = 0$.

Sufficiency: (by construction) Let

$$T_{1}(x) = h(x)$$

$$T_{2}(x) = \sum_{k=1}^{\rho} \frac{1}{k!} (D_{x}^{k} T(h \circ \hat{f}))_{(0,0)} (x \otimes x \otimes ... \otimes x)$$

$$T_{3}(x) = \sum_{k=1}^{\rho} \frac{1}{k!} (D_{x}^{k} T(h \circ \hat{f}^{2}))_{(0,0)} (x \otimes x \otimes ... \otimes x)$$

$$\vdots$$

$$T_{N}(x) = \sum_{k=1}^{\rho} \frac{1}{k!} (D_{x}^{k} T(h \circ \hat{f}^{N-1}))_{(0,0)} (x \otimes x \otimes ... \otimes x)$$

$$T_{N+1}(x,u) = T_{1} \circ \hat{f}^{N}(x,u).$$

Then it can be easily checked that T as defined above satisfies the conditions of Definition 3.

Q.E.D.

Now note that

$$(D_{\xi}^{m}D_{u}(h \circ \hat{f}^{i}))_{(0,0)} = \sum_{\ell=0}^{m} (B_{m,\ell}^{i})_{(0,0)}(D_{x}^{\ell+1} h)_{x=0},$$
 (2)

where

$$B_{m,0}^{i} = D_{\xi}^{m} (D_{u} \hat{f}^{i})^{T}$$

and

$$B_{m,\ell}^{i} = \sum_{k_{1}=1}^{m-\ell+1} \sum_{k_{2}=1}^{k_{1}} \sum_{k_{\ell}=1}^{k} \sum_{k_{\ell}=1}^{m-\ell+1-k_{1}} (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{1}-k_{2}} (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{2}-k_{3}} + (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{2}-k_{3}}) + (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{2}-k_{3}} \otimes D_{\xi}^{k_{2}-k_{3}} \otimes D_{\xi}^{k_{2}-k_{3}} + (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{2}-k_{3}} \otimes D_{\xi}^{k_{2}-k_{3}} \otimes D_{\xi}^{k_{2}-k_{3}} + (D_{\xi}\hat{f}^{i}^{T} \otimes D_{\xi}^{k_{2}-k_{3}} $

(For a proof of (2), see the Appendix.) Let

$$A_{k} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{bmatrix}$$

where A_{ij} is an $(N-1)(N+1)^{i} \times N^{j+1}$ submatrix defined by

$$A_{ij} = 0_{(N-1)(N+1)^{i} \times N^{j+1}}$$
, if $i < j$,

$$A_{ij} = \bigoplus_{\substack{(j+1)! \\ (B_{ij}^{N-1})_{(0,0)} \\ \vdots \\ (B_{i,i}^{N-1})_{(0,0)}}}, \quad \text{if } i \ge j.$$

Let the $(N-1)(N+1)^{i} \times 1$ vector β^{i} be defined by

$$\beta^{i} = \tilde{\zeta} \left(\begin{bmatrix} (B_{i,0}^{1})_{(0,0)} \\ (B_{i,0}^{2})_{(0,0)} \\ \vdots \\ (B_{i,0}^{N-1})_{(0,0)} \end{bmatrix} \right)$$

(See Section II for the definitions of \bullet and $\tilde{\zeta}$.) Also, let $\beta_k = \begin{pmatrix} \beta^1 & \beta^2 & \dots & \beta^k \end{pmatrix}$.

With these preliminaries, we can state our main theorems.

Theorem 3: Σ is approximately linearizable with order $\rho(\geq 2)$ if and only if

(i)
$$\left\{ \left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \left(\frac{\partial f}{\partial x}\right)_{(0,0)} \left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \dots, \left(\frac{\partial f}{\partial x}\right)_{(0,0)}^{N-1} \left(\frac{\partial f}{\partial u}\right)_{(0,0)} \right\}$$
 are

linearly independent, and

(ii)
$$\beta_{\rho-1} \in Image(A_{\rho-1})$$
.

Proof:

Necessity: Suppose that Σ is approximately linearizable with order ρ . Then there exists a function h(x) satisfying (i)-(v) of Lemma 2; in particular, $(D_u(h \circ \hat{f}^i))_{(0,0)} = (\frac{\partial h}{\partial x})_{x=0} (\frac{\partial f}{\partial x})_{(0,0)}^{i-1} (\frac{\partial f}{\partial u})_{(0,0)} = 0$ for $1 \le i \le N-1$, and $(\frac{\partial h}{\partial x})_{x=0} (\frac{\partial f}{\partial x})_{(0,0)}^{N-1} (\frac{\partial f}{\partial u})_{(0,0)} \ne 0$.

Assume that $\left\{\left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \left(\frac{\partial f}{\partial x}\right)_{(0,0)}, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \ldots, \left(\frac{\partial f}{\partial x}\right)_{(0,0)}^{N-1}, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \ldots, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}^{N-1}, \ldots, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}$

 $\frac{\left(\frac{\partial f}{\partial x}\right)_{x=0}^{N-1} \left(\frac{\partial f}{\partial x}\right)_{(0,0)}^{N-1} \left(\frac{\partial f}{\partial u}\right)_{(0,0)}^{N-1} = 0.$ This is a contradiction, which implies that $\left\{ \left(\frac{\partial f}{\partial u}\right)_{(0,0)}, \left(\frac{\partial f}{\partial x}\right)_{(0,0)}^{N-1}, \left(\frac{\partial f}{\partial x}\right)_{(0,0)}^{N-1}, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}^{N-1}, \left(\frac{\partial f}{\partial u}\right)_{(0,0)}^{N-1} \right\}$ are linearly independent.

Recall that $(D_u(h \circ \hat{f}^i))_{(0,0)} = (D_\xi^m D_u(h \circ \hat{f}^i))_{(0,0)} = 0$ for m=0 and $1 \le i \le N-1$. Since $\{(\frac{\partial f}{\partial u})_{(0,0)}, (\frac{\partial f}{\partial x})_{(0,0)}, (\frac{\partial f}{\partial u})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}, (\frac{\partial f}{\partial u})_{(0,0)}\}$ are linearly independent, $(D_x h)_{x=0}$ is uniquely determined up to a constant multiple (i.e., $(D_x h)_{x=0} = \alpha c$, where the scalar $\alpha(\neq 0)$ is arbitrary and the N×1 column vector c satisfies $c^T(\frac{\partial f}{\partial x})_{(0,0)}^i(\frac{\partial f}{\partial u})_{(0,0)} = 0$, for $0 \le i \le N-2$, and $c^T(\frac{\partial f}{\partial x})_{(0,0)}^{N-1}(\frac{\partial f}{\partial u})_{(0,0)} = 1$.

Now by (ii) and (iv) of Lemma 2, $(D_{\xi}^m D_u(h \circ \hat{f}^i))_{(0,0)} = 0$ for $1 \le m \le p-1$ and $1 \le i \le N-1$. From (2), we obtain

$$\begin{bmatrix} B_{1,1}^{1} & & & & & & \\ B_{1,1}^{2} & & & & & & \\ \vdots & & & & & & & \\ B_{1,1}^{N-1} & & & & & & \\ B_{1,1}^{N-1} & & & & & & \\ B_{2,1}^{N-1} & B_{2,2}^{N-1} & & & & & \\ \vdots & & \vdots & & & & & \\ B_{\rho-1,1}^{N-1} & B_{\rho-1,2}^{N-1} & & B_{\rho-1,\rho-1}^{N-1} \\ \vdots & & & & & & \\ B_{\rho-1,1}^{N-1} & B_{\rho-1,2}^{N-1} & & B_{\rho-1,\rho-1}^{N-1} \\ \vdots & & & & & \\ B_{\rho-1,1}^{N-1} & B_{\rho-1,2}^{N-1} & & B_{\rho-1,\rho-1}^{N-1} \\ \end{bmatrix}_{(0,0)} = \begin{bmatrix} (0_{\chi}^{2}h)_{\chi=0} \\ (0_{\chi}^{3}h)_{\chi=0} \\ \vdots \\ (0_{\chi}^{2}h)_{\chi=0} \\ \vdots \\ (0_{\chi}^{2}h)_{\chi=0} \\ \vdots \\ (0_{\chi}^{2}h)_{\chi=0} \end{bmatrix} = \begin{bmatrix} B_{1,0}^{1} \\ B_{1,0}^{2} \\ \vdots \\ B_{1,0}^{N-1} \\ B_{2,0}^{2} \\ \vdots \\ B_{\rho-1,0}^{N-1} \\ \vdots \\ B_{\rho-1,0}^{N-1} \end{bmatrix}_{(0,0)}$$

Since
$$(B_{1,0}^{\dagger})_{(0,0)}(D_{x}^{\dagger}h)_{x=0} = (D_{\xi}^{\dagger}D_{u}\hat{f}^{\dagger})_{(0,0)}(D_{x}^{\dagger}h)_{x=0} = \alpha ((D_{\xi}^{\dagger}D_{u}\hat{f}^{\dagger})_{(0,0)}),$$

$$\begin{bmatrix} B_{1,0}^{\dagger} \\ B_{1,0}^{\dagger} \\ \vdots \\ B_{1,0}^{N-1} \end{bmatrix}$$

$$(D_{x}^{\dagger}h)_{x=0} = \alpha\beta^{\dagger}$$

Thus the right-hand side of equation (3) is $-\alpha[(\beta^1)^T, \ldots, (\beta^{\rho-1})^T]^T = -\alpha\beta_{\rho-1}^T$. It follows that $\beta_{\rho-1}$ is in the image of the matrix on the left-hand side of (3). However, the $\{D_X^k h\}$ are constrained because, for example, $\frac{\partial^2 h}{\partial x_i^2} \partial x_j = \frac{\partial^2 h}{\partial x_j} \partial x_j$. Hence, the stronger condition $\beta_{\rho-1} \in \text{Image } (A_{\rho-1})$ holds, as is proved in the Appendix in Lemma A.2.

Sufficiency: Suppose that (i) and (ii) above are true. By (i), there exists an N×1 vector C_1 such that $C_1^T(\frac{\partial f}{\partial x})_{(0,0)}^i(\frac{\partial f}{\partial u})_{(0,0)}^i=0$ for $0 \le i \le N-2$ and $C_1^T(\frac{\partial f}{\partial x})_{(0,0)}^{N-1}(\frac{\partial f}{\partial u})_{(0,0)}^i=1$. By (ii), there exist C_2, C_3, \ldots, C_p such that

$$A_{\rho-1} \begin{bmatrix} \frac{1}{2!} & c_2 \\ \frac{1}{3!} & c_3 \\ \vdots \\ \frac{1}{\rho!} & c_{\rho} \end{bmatrix} = -\beta_{\rho-1}$$

where C_i is an $N^i \times I$ vector. Let

$$h(x) = \int_{i=1}^{\rho} \frac{1}{i!} C_i^{\mathsf{T}} (x \otimes x \otimes \dots \otimes x).$$

Then it can be easily checked that $(D_{\xi}^{j}D_{u}(h \circ \hat{f}^{i}))_{(0,0)} = 0$, for $1 \le i \le N-1$ and $0 \le j \le p-1$. Clearly $(D_{u}(h \circ \hat{f}^{N}))_{(0,0)} = (D_{x}^{l}h)_{x=0}^{T}(\frac{\partial f}{\partial x})_{(0,0)}^{N-1}(\frac{\partial f}{\partial u})_{(0,0)} = 1 \ne 0$.

Now assume that

$$\det \begin{bmatrix} \left(\frac{\partial h}{\partial x}\right)_{x=0} \\ \left(\frac{\partial (h \circ \hat{f})}{\partial x}\right)_{(0,0)} \\ \vdots \\ \left(\frac{\partial (h \circ \hat{f})^{N-1}}{\partial x}\right)_{(0,0)} \end{bmatrix} = 0.$$

Then there exists k such that $1 \le k \le N-1$ and $(D_X^l h)_{X=0}^T (\frac{\partial f}{\partial x})_{(0,0)}^k = \sum_{i=0}^{k-1} \alpha_i (D_X^l h)_{X=0}^T (\frac{\partial f}{\partial x})_{(0,0)}^i$, for some $\{\alpha_i\}_{i=0}^{k-1}$. Thus $(D_X^l h)_{X=0}^T (\frac{\partial f}{\partial x})_{(0,0)}^{N-1} (\frac{\partial f}{\partial u})_{(0,0)}^i$ = $\sum_{i=0}^{k-1} \alpha_i (D_X^l h)_{X=0}^T (\frac{\partial f}{\partial x})_{(0,0)}^{N-1-k+i} (\frac{\partial f}{\partial u})_{(0,0)}^i = 0$. This is a contraction, which implies (iii) of Lemma 2. Hence, by Lemma 2, Σ is approximately linearizable with order ρ . (Q.E.D.)

Remark: Σ is approximately linearizable with order 1 if and only if (i) of Theorem 3 holds, just as in the continuous case (Krener 1984).

Now a sufficient condition for local linearizability is given in the following theorem.

Theorem 4: Suppose that f(x,u) of Σ is an analytic \mathbb{R}^N -valued function. Σ is locally linearizable at (0,0) if

- (i) $\{(\frac{\partial f}{\partial u})_{(0,0)}, (\frac{\partial f}{\partial x})_{(0,0)}, (\frac{\partial f}{\partial u})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{N-1}, (\frac{\partial f}{\partial u})_{(0,0)}\}$ are linearly independent, and
- (ii) there exists $k(<\infty)$ such that $\beta_\ell \in \text{span}(C_\ell^k)$ for all $\ell \ge 1$, where C_ℓ^k is composed of the first k columns of A_ℓ .

<u>Proof</u>: By (i), there exists an N×1 vector c_1 such that $c_1^T (\frac{\partial f}{\partial x})_{(0,0)}^i (\frac{\partial f}{\partial u})_{(0,0)}^i$ = 0 for $0 \le i \le N-2$ and $c_1^T (\frac{\partial f}{\partial x})_{(0,0)}^{N-1} (\frac{\partial f}{\partial u})_{(0,0)}^i = 1$. By (ii), there exist c_2, c_3, \ldots, c_i such that $j < \infty$ and

$$A_{\ell} \begin{bmatrix} \frac{1}{2!} c_{2} \\ \frac{1}{3!} c_{3} \\ \vdots \\ \frac{1}{j!} c_{j} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = -\beta_{\ell}, \text{ for } \ell \geq j,$$

where c_i is an $N^i \times 1$ vector. Let

$$h(x) = \sum_{j=1}^{j} \frac{1}{j!} c_j^{\mathsf{T}} (x \otimes x \otimes \dots \otimes x).$$

Then it can be easily checked that $(D_{\xi}^{S}D_{u}(h \circ \hat{f}^{i}))_{(0,0)} = 0$ for $1 \le i \le N-1$ and $s \ge 0$. Since both h(x) and \hat{f}^{i} are analytic, $h \circ \hat{f}^{i}(x,u)$ are analytic, for $1 \le i \le N-1$. Thus $D_{u}(h \circ \hat{f}^{i}) \equiv 0$, for $1 \le i \le N-1$. As in the sufficiency proof in Theorem 3, it can be shown that h satisfies the other conditions of Lemma 1. (Q.E.D.)

It is easy to see that (ii) of Theorem 4 implies (ii) of Theorem 3.

Example 1: Consider the following discrete-time nonlinear system

$$\Sigma : \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} = \begin{bmatrix} x_2(t) + 2x_1(t)u(t) + u(t)^2 \\ x_1(t) + u(t) \end{bmatrix} = f(x(t), u(t))$$

Since $(\frac{\partial f}{\partial u})_{(0,0)} = (\frac{0}{1})$ and $(\frac{\partial f}{\partial x})_{(0,0)}(\frac{\partial f}{\partial u})_{(0,0)} = (\frac{1}{0})$, (i) of Theorem 4 is satisfied. Note that

$$\beta^{1} = ((D_{\xi}D_{u}f^{T})_{(0,0)}) = \tilde{\zeta}\left(\begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 2 & 0 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$

and $\beta^{i} = 0$ for $i \ge 2$.

$$(B_{11}^{1})_{(0,0)} = (D_{\xi}f^{T})_{(0,0)} \otimes (D_{u}f^{T})_{(0,0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes (0 & 1) = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \underbrace{\bullet}_{2!} (B_{11}^{1})_{(0,0)} = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

It can be easily checked that all elements of the 4-th column of A_{il} are 0 for $i \ge 2$. Thus $\beta_{\ell} \in \text{span}(C_{\ell}^4)$ for $\ell \ge 1$, where C_{ℓ}^4 is composed of the first 4 columns of A_{ℓ} . Therefore (ii) of Theorem 4 is also satisfied. Hence Σ is locally linearizable at (0,0). Actually we can construct a diffeomorphism $T = (T_1, T_2, T_3)$ in the way that is given in the proof of Theorem 4. Since

$$A_{\ell} \begin{bmatrix} \frac{1}{2!} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \end{bmatrix} \\ \frac{\frac{1}{3!} \cdot 0}{8 \times 1} \\ \vdots \\ \frac{1}{(\ell+1)!} \cdot 0 \\ 2\ell+1 \times 1 \end{bmatrix} = -\beta_{\ell} \quad \text{for } \ell \ge 1,$$

$$c_2^T = (0 \ 0 \ 0 \ -2)$$
. Clearly $c_1^T = (1 \ 0)$. Thus $T_1(x) = x_1 - \frac{2}{2!} x_2^2 = x_1 - x_2^2$ $T_2(x) = T_1 \circ f(x, u) = x_2 - x_1^2$ $T_3(x, u) = T_1 \circ \hat{f}^2(x, u) = x_1 + u - (x_2 + 2x_1 u + u^2)^2$.

Example 2: Consider

$$\Sigma : \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} = \begin{bmatrix} x_2(t) + 2x_1(t)u(t) + x_1(t)^2 u(t) + u(t)^2 \\ x_1(t) + u(t) \end{bmatrix} = f(x(t), u(t))$$

Clearly (i) of Theorem 3 is satisfied, because $(\frac{\partial f}{\partial u})_{(0,0)}$ and $(\frac{\partial f}{\partial x})_{(0,0)}(\frac{\partial f}{\partial u})_{(0,0)}$ are the same as in Example 1. Since $(D_{\xi}^{l}D_{u}f^{l})_{(0,0)} = 0$

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 2 & 0 \end{bmatrix}, \quad \beta^{1} = \tilde{\zeta}((D_{\xi}D_{u}f^{T})_{(0,0)}) = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}. \quad \text{Since } (D_{\xi}^{2}D_{u}f^{T})_{(0,0)} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0$$

$$A_{1} = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$(B_{22}^{1})_{(0,0)} = (D_{\xi}f^{T})_{(0,0)} \otimes (D_{\xi}f^{T})_{(0,0)} \otimes (D_{u}f^{T})_{(0,0)}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes (0 \quad 1)$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

$$(B_{21}^{1})_{(0,0)} = (D_{\xi}(D_{\xi}f^{T} \otimes D_{u}f^{T}))_{(0,0)} + (D_{\xi}f^{T} \otimes D_{\xi}D_{u}f^{T})_{(0,0)}$$

$$= (D_{\xi}^{2}f^{T} \otimes D_{u}f^{T})_{(0,0)} + \begin{bmatrix} D_{\xi}f^{T} \otimes D_{x_{1}}D_{u}f^{T} \\ D_{\xi}f^{T} \otimes D_{x_{2}}D_{u}f^{T} \\ D_{\xi}f^{T} \otimes D_{u}D_{u}f^{T} \end{bmatrix} + (D_{\xi}f^{T} \otimes D_{\xi}D_{u}f^{T})_{(0,0)}$$

$$= \begin{bmatrix} 0 & 0 & 4 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{bmatrix}$$

$$A_{21} = \begin{array}{c} \bullet & (B_{21}^{1})_{(0,0)} = \\ 2! & \begin{pmatrix} 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 6 & 6 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 6 & 6 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 6 & 6 & 0 \\ 0 & 0 & 6 & 6 & 0 \\ \end{pmatrix}$$

Since $\beta_1 \in \text{Image } (A_1)$, Σ is approximately linearizable with $\rho=2$. However, since $\beta_2 \notin \text{Image } (A_2)$, it is not approximately linearizable with $\rho=3$. Thus it is also not locally linearizable. Let

$$T_1 = x_1 - x_2^2$$

$$T_2 = x_2 - x_1^2$$

$$T_3 = x_1 + u - (x_2 + 2x_1u + x_1^2u + u^2)^2$$

Then

$$\begin{aligned} y_1(t+1) & \stackrel{\triangle}{=} T_1(x(t+1)) = x_2(t) + 2x_1(t)u(t) + x_1(t)^2u(t) + u(t)^2 - (x_1(t) + u(t))^2 \\ & = x_2(t) - x_1(t)^2 + x_1(t)^2u(t) \\ & = T_2(x(t)) + 0(x,u)^3 \\ & = y_2(t) + 0(x,u)^3 \end{aligned}$$

$$y_2(t+1) & \stackrel{\triangle}{=} T_2(x(t+1)) = T_3(x(t),u(t)) & \stackrel{\triangle}{=} v(t)$$

IV. Multi-Input Case

The results in Section III can be easily generalized to the multiinput case. Thus, in this section we give (without proof) a sufficient
condition for local linearizability and a necessary and sufficient
condition for approximate linearizability by state feedback and coordinate
change for a multi-input nonlinear discrete-time system (for proof, see
Lee 1986).

Consider a multi-input nonlinear discrete-time system of the form

$$\Sigma \colon x(t+1) = f(x(t), u(t)) \tag{4}$$

where x(t) $\in \mathbb{R}^N$, u(t) $\in \mathbb{R}^m$, and f(x,u): $\mathbb{R}^{N+m} \to \mathbb{R}^N$ is a C^∞ \mathbb{R}^N -valued function. Also, consider the following multi-input linear discrete-time system Σ_0 :

$$\Sigma_0$$
: y(t+1) = Ay(t) + Bv(t) = g(y(t),v(t)),

where $y(t) \in \mathbb{R}^N$, $v(t) \in \mathbb{R}^m$, $A = block diag {A_{11}, A_{22}, ..., A_{min}}$,

$$A_{ii} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$
 (K_i×K_i matrix),

B = block diag $\{b_1, b_2, \dots, b_m\}$, and

$$b_{i} = (0 ... 0 1)^{T}$$
. $(K_{i} \times 1 \text{ matrix})$

<u>Definition 4</u>: Σ is said to be locally linearizable at (x_e, u_e) if there exist indices $\{K_i\}_{i=1}^m$, an open neighborhood $U(\subset \mathbb{R}^{N+m})$ of an equilibrium

point (x_e, u_e) and a diffeomorphism T: $U \rightarrow T(U)$ such that

(i)
$$\bar{T} = (T_1, T_2, \dots, T_N)$$
 are functions of x_1, x_2, \dots, x_N only,

(ii)
$$T(x_e, u_e) = 0_{(N+m)\times 1}$$
, and

(iii)
$$\overline{\mathsf{T}} \circ \mathsf{f} = \mathsf{g} \circ \mathsf{T}$$
.

If we let $\binom{y(t)}{v(t)} = T(x(t),u(t))$, then y(t) and v(t) satisfy the relation Σ_0 .

<u>Definition 5</u>: Σ is said to be approximately linearizable with order ρ if there exist indices $\{K_i\}_{i=1}^m$, an open neighborhood U ($\subset \mathbb{R}^{N+m}$) of an equilibrium point (x_e, u_e) and a diffeomorphism $T: U \to T(U)$ such that

(i)
$$\bar{T} = (T_1, T_2, \dots, T_N)$$
 are functions of x_1, x_2, \dots, x_N only,

(ii)
$$T(x_e, u_e) = 0_{(N+m)\times 1}$$
, and

(iii)
$$\overline{T} \circ f = g \circ T + 0(x - x_e, u - u_e)^{\rho + 1}$$
.

Thus in Definition 5 we consider the following nearly linear multiinput discrete-time system:

$$\Sigma_0'$$
: y(t+1) = Ay(t) + Bv(t) + 0(x-x_e,u-u_e)^{p+1},

where the N×N matrix A and N×m matrix B are as in Σ_0 .

Now we state the generalized version of Lemmas 1 and 2 and Theorems 3 and 4. Just as in the single-input case, we can assume f(0,0) = 0 without loss of generality, if f has an equilibrium point. Also, define $\hat{f}^i(x,u)$ in the same way as in the previous section.

Lemma 5: Σ is locally linearizable at (0,0) if and only if there exist $\{K_i\}_{i=1}^m$ and C^∞ functions $h_1(x),h_2(x),\ldots,h_m(x)\colon W(\subset\mathbb{R}^N)+\mathbb{R}$ such that

(i) W is an open neighborhood of $0 \in \mathbb{R}^N$,

(ii)
$$D_u(h_j \cdot \hat{f}^i) \equiv 0$$
, for $1 \le j \le m$ and $1 \le i \le k_j - 1$,

$$\det \begin{bmatrix} (\frac{\partial h_1}{\partial x})_{x=0} \\ (\frac{\partial h_1 \circ f}{\partial x})_{(0,0)} \\ (\frac{\partial h_1 \circ f^{K_1-1}}{\partial x})_{(0,0)} \\ \vdots \\ (\frac{\partial h_m}{\partial x})_{x=0} \\ \vdots \\ (\frac{\partial (h_m \circ f^{K_m-1})}{\partial x})_{(0,0)} \end{bmatrix} \neq 0$$

$$\det \begin{bmatrix} (\frac{\partial(h_1 \circ f^{K_1})}{\partial u})_{(0,0)} \\ \vdots \\ (\frac{\partial(h_m \circ f^{K_m})}{\partial u})_{(0,0)} \end{bmatrix} \neq 0$$

and

(v) $h_j(0) = 0$ for $1 \le j \le m$. Let $\xi = (x^T, u^T)^T$. Thus ξ is a (N+m)×1 vector.

Lemma 6: Σ is approximately linearizable with order ρ if and only if there exist $\{K_i\}_{i=1}^m$ and C^∞ functions $h_1(x), h_2(x), \ldots, h_m(x)$: $W(=\mathbb{R}^N) \to \mathbb{R}$ such that

- (i) W is an open neighborhood of $0 \in \mathbb{R}^N$,
- (ii) $(D_{\xi}^{K}D_{u}(h_{j} \circ \hat{f}^{i}))_{(0,0)} = 0$ for $1 \le j \le m$, $1 \le i \le k_{j} 1$, and $0 \le k \le p 1$, and (iii), (iv), and (v) of Lemma 5 are satisfied. Let

$$E = \{ (\frac{\partial f}{\partial u_1})_{(0,0)}, (\frac{\partial f}{\partial x})_{(0,0)}(\frac{\partial f}{\partial u_1})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_1-1}(\frac{\partial f}{\partial u_1})_{(0,0)}, (\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_2-1}(\frac{\partial f}{\partial u_1})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_m-1}(\frac{\partial f}{\partial u_m})_{(0,0)} \}$$

$$E_i = \{ (\frac{\partial f}{\partial u_1})_{(0,0)}, (\frac{\partial f}{\partial x})_{(0,0)}(\frac{\partial f}{\partial u_1})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_1})_{(0,0)}, (\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_1})_{(0,0)}, (\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_1})_{(0,0)}, \dots, (\frac{\partial f}{\partial x})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial u_2})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_1})_{(0,0)}, \dots, (\frac{\partial f}{\partial u_2})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial u_2})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_2})_{(0,0)}, \dots, (\frac{\partial f}{\partial u_2})_{(0,0)}^{K_1-2}(\frac{\partial f}{\partial u_2})_{(0,0)$$

Also, define $\tilde{\zeta}^i$: $\mathbb{R}^{p\times N} \to \mathbb{R}^p$, for $i=1,2,\ldots,m$, by

$$\tilde{\zeta}^{i}(V) = (\zeta^{i}(v_1) \zeta^{i}(v_2) \dots \zeta^{i}(v_p))^{T}$$

where v_j is the j^{th} row of V. Let

$$\beta_{j}^{i} = \tilde{\zeta}^{i} \left(\begin{bmatrix} (D_{\xi}^{j} D_{u} f^{T})_{(0,0)} \\ (D_{\xi}^{j} D_{u} \hat{f}^{2T})_{(0,0)} \\ \vdots \\ (D_{\xi}^{j} D_{u} \hat{f}^{K_{i}-1})_{(0,0)} \end{bmatrix} \right)$$

Also, let
$$\gamma_k^i = ((\beta_1^i)^T (\beta_2^i)^T \dots (\beta_k^i)^T)^T$$
. Let

$$D_{k}^{\ell} = \begin{bmatrix} D_{11}^{1} & D_{12}^{1} & \dots & D_{1k}^{1} \\ D_{21}^{1} & D_{22}^{1} & \dots & D_{2k}^{1} \\ \vdots & \vdots & & \vdots \\ D_{k1}^{1} & D_{k2}^{1} & \dots & D_{kk}^{1} \end{bmatrix}$$

where $D_{ij}^{\ell} = 0$ $m(k_{\ell}-1)(N+m)^{i} \times N^{j+1} \text{ if } i < j, \text{ and}$

$$D_{ij}^{\ell} = \bigoplus_{(j+1)!} \begin{bmatrix} (B_{ij}^{1})_{(0,0)} \\ (B_{ij}^{2})_{(0,0)} \\ \vdots \\ (B_{i,j}^{k\ell-1})_{(0,0)} \end{bmatrix} \text{ if } i \geq j$$

Theorem 7: Σ is approximately linearizable with order $\rho(\ge 2)$ if and only if there exist $\{K_i^m\}_{i=1}^m$ such that

- (i) the elements of E are linearly independent,
- (ii) span $E_i = \text{span } (E_i \cap E) \text{ for } 1 \leq i \leq m$, and
- (iii) $\gamma_{\rho-1}^{\ell} \in \text{Image } (D_{\rho-1}^{\ell}) \text{ for } 1 \leq \ell \leq m.$

Remark: Σ is approximately linearizable with order 1 if and only if (i) and (ii) of Theorem 7 hold, just as in the continuous time case [6]. If m=1 (single-input case), K_1 =N. Thus (i) of Theorem 7 is the same as (i) of Theorem 3. Since $E_1 = E_1 \cap E$, (ii) of Theorem 7 is trivially satisfied. Since the operator ζ^1 is the same as the operator ζ in the previous section, $\gamma_{\rho-1}^1 = \beta_{\rho-1}$. Since $D_{\rho-1}^1 = A_{\rho-1}$, (iii) of Theorem 7 is the same as (ii) of Theorem 3. Therefore, Theorem 7 is a generalized version of Theorem 3.

Now a sufficient condition for local linearizability is given in the

following theorem.

Theorem 8: Suppose that f(x,u) of Σ is an analytic \mathbb{R}^N -valued function. Σ is locally linearizable at (0,0) if

- (i) the elements of E are linearly independent,
- (ii) span $E_i = \text{span } (E_i \cap E)$, for $1 \le i \le m$, and
- (iii) there exists k($<\infty$) such that $\gamma_{\mathbf{i}}^{\ell} \in \text{span } ((F_{\mathbf{i}}^{\ell})^{k})$ for $1 \le \ell \le m$ and $i \ge 1$, where $(F_{\mathbf{i}}^{\ell})^{k}$ is composed of the first k columns of $D_{\mathbf{i}}^{\ell}$.

Given the system (4) we choose the Kronecker indices $\{K_i\}_{i=1}^m$ in a similar way to the continuous time case (Hunt and Su 1981). First we form the matrix

$$\begin{bmatrix} (\frac{\partial f}{\partial u_{1}})_{(0,0)} & (\frac{\partial f}{\partial u_{2}})_{(0,0)} & \cdots & (\frac{\partial f}{\partial u_{m}})_{(0,0)} \\ (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{1}})_{(0,0)} & (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{2}})_{(0,0)} & \cdots & (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{m}})_{(0,0)} \\ \vdots & \vdots & \vdots & \vdots \\ (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{1}})_{(0,0)} & (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{2}})_{(0,0)} & \cdots & (\frac{\partial f}{\partial x})_{(0,0)} (\frac{\partial f}{\partial u_{m}})_{(0,0)} \end{bmatrix}$$

Set α_i = number of linearly independent vectors in the first (i+1) rows, for $0 \le i \le N-1$. Take $\gamma_0 = \alpha_0$ and $\gamma_i = \alpha_i - \alpha_{i-1}$ for $1 \le i \le N-1$, and define κ_i to be the number of γ_j with $\gamma_j \ge i$.

REFERENCES

- CHENG, D., TARN, T., and ISIDORI, A., 1985, "Global Feedback Linearization of Nonlinear Systems," *IEEE Trans. Autom. Control*, 30, 808-811.
- GRAHAM, A., 1981, Kronecker Products and Matrix Calculus with Applications (New York: Ellis Horwood Ltd.).
- GRIZZLE, J.W., 1985a, "Controlled Invariance for Discrete Time Nonlinear Systems with an Application to the Disturbance Decoupling Problem," *IEEE Trans. Autom. Control*, 30, 868-874.
- GRIZZLE, J.W., 1985b, "Local Input-Output Decoupling of Discrete Time Nonlinear Systems," preprint.
- GRIZZLE, J.W., and NIJMEIJER, H., 1985, "Zeros at Infinity for Nonlinear Discrete Time Systems," preprint.
- HUNT, L., and SU, R., 1981, "Local Transformations for Multi-Input Nonlinear Systems," *Proc. Joint Autom. Control Conf.*, Charlottesville, VA.
- JAKUBCZYK, B., and RESPONDEK, W., 1980, "On the Linearization of Control Systems," Bull. Acad. Polon. Sci. Ser. Math. Astron. Physics, 28, 517-522.
- KRENER, A.J., 1973, "On the Equivalence of Control Systems and the Linearization of Nonlinear Systems," SIAM Jl Control, 11, 670-676.
- KRENER, A.J., 1984, "Approximate Linearization by State Feedback and Coordinate Change," Systems and Control Letters, 5, 181-185
- LEE, H.G., 1986, "On Discrete Time Nonlinear Control Systems," Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Texas at Austin.
- MONACO, S., and NORMAND-CYROT, D., 1983a, "The Immersion under Feedback of a Multidimensional Discrete-Time Nonlinear System into a Linear System," Int. J. Control, 38, 245-261.
- MONACO, S., and NORMAND-CYROT, D., 1983b, "Formal Power Series and Input-Output Linearization of Nonlinear Discrete-Time Systems," 22nd IEEE Conf. on Decision and Control, San Antonio, Texas, 655-660.
- SU, R., 1982, "On the Linear Equivalents of Nonlinear Systems," Systems and Control Letters, 2, 48-52.
- VETTER, W.J., 1970, "Derivative Operations on Matrices," *IEEE Trans. Autom. Control*, 15, 241-244.
- VETTER, W.J., 1971, "Correction to 'Derivative Operations on Matrices'," *IEEE Trans. Autom. Control*, 16, 113.

Appendix

Lemma A.1: The equation (2) holds.

Proof: Clearly,

$$D_{\xi}^{m}D_{u}(h \circ \hat{f}^{i}) = \sum_{\ell=0}^{m} (B_{m,\ell}^{i})_{(x,u)}(D_{x}^{\ell+1}h)_{\hat{f}^{i}(x,u)}$$
 and

$$D_{\xi}^{m+1}D_{u}(h \circ \hat{f}^{i}) = \sum_{\ell=0}^{m+1} (B_{m+1,\ell}^{i})_{(x,u)}(D_{x}^{\ell+1}h)_{\hat{f}^{i}(x,u)}$$

where $\{\beta_{m,\ell}^{i}\}$ are to be determined. Then

$$B_{m+1,0}^{i} = D_{\xi}(B_{m,0}^{i})$$
 (A.1)

$$B_{m+1,\ell}^{i} = D_{\xi}(B_{m,\ell}^{i}) + D_{\xi}\hat{f}^{i} \otimes B_{m,\ell-1}^{i} \quad \text{for } 1 \leq \ell \leq m, \tag{A.2}$$

$$B_{m+1,m+1}^{\dagger} = D_{\xi} \hat{f}^{\dagger} \otimes B_{m,m}^{\dagger}.$$
 (A.3)

By (A.1), since $B_{0,0}^{i} = D_{u}\hat{f}^{i}^{T}$, $B_{m,0}^{i} = D_{\xi}^{m}D_{u}\hat{f}^{i}^{T}$ for $m \ge 1$. Note that (2) is true when m=1. Now suppose that (2) is true for $m \le p$. Let $1 \le \ell \le p$. Then, by (A.2),

$$\begin{split} B_{p+1,\ell}^{i} &= D_{\xi}(B_{p,\ell}^{i}) + D_{\xi}\hat{f}^{iT} \otimes B_{p,\ell-1}^{i} \\ &= \sum_{k_{1}=1}^{p-\ell+1} \sum_{k_{2}=1}^{k_{1}} \dots \sum_{k_{\ell}=1}^{k_{\ell-1}} D_{\xi}^{p+1-\ell+1-k_{1}} (D_{\xi}\hat{f}^{iT} \otimes D_{\xi}^{k_{1}-k_{2}} (D_{\xi}\hat{f}^{iT} \otimes \dots \otimes D_{\xi}^{k_{\ell-1}-k_{\ell}} \\ &\cdot (D_{\xi}\hat{f}^{iT} \otimes D_{\xi}^{k_{\ell-1}} D_{u}\hat{f}^{iT}) \dots)) + \sum_{k_{1}=1}^{p+1-\ell+1} \sum_{k_{2}=1}^{k_{1}} \dots \sum_{k_{\ell-1}=1}^{k_{\ell-2}} D_{\xi}\hat{f}^{iT} \otimes D^{p+1-\ell+1-k_{1}} \\ &\cdot (D_{\xi}\hat{f}^{iT} \otimes D_{\xi}^{k_{1}-k_{2}} (D_{\xi}\hat{f}^{iT} \otimes \dots \otimes D_{\xi}^{k_{\ell-2}-k_{\ell-1}} (D_{\xi}\hat{f}^{iT} \otimes D_{\xi}^{k_{\ell-1}-1} D_{u}\hat{f}^{iT}) \dots)) \end{split}$$

Changing the dummy variables $k_1, k_2, \ldots, k_{\ell-1}$ of the second term into k_2, k_3, \ldots, k_ℓ , respectively, the second term becomes

$$\begin{array}{l} p+1-\ell+1 & k_{2} & k_{\ell}-1 &$$

Thus (2) is true for m = p+1 and $1 \le \ell \le p$. By (A.3), it is easy to see that

- (2) is true for $m = \ell = p+1$. Hence (2) is true for m = p+1. By induction,
- (2) is true for $m \ge 1$.

Let $h(x): \mathbb{R}^{N} \to \mathbb{R}$ be a C^{∞} function.

Lemma A.2: If

$$(s_1 \ s_2 \ \dots \ s_k) \begin{bmatrix} (D_x^2 h)_{x=0} \\ (D_x^3 h)_{x=0} \\ \vdots \\ (D_x^{k+1} h)_{x=0} \end{bmatrix} = d_{p \times 1},$$
 (A.4)

where S_i is a $p \times N^{i+1}$ matrix for $1 \le i \le k$, then $d \in Image (B)$, where $B = ((\bullet S_1), (\bullet S_2), \dots, (\bullet S_k))$.

Proof: (A.4) is equivalent to

$$S_1(D_x^2h)_{x=0} + S_2(D_x^3h)_{x=0} + ... + S_k(D_x^{k+1}h)_{x=0} = d.$$

Consider

$$S_1(D_x^2h)_{x=0} = d'.$$

Note that $(\frac{\partial^2 h}{\partial x_i \partial x_j})_{x=0} \stackrel{\triangle}{=} h_{ij} = h_{ji} \stackrel{\triangle}{=} (\frac{\partial^2 h}{\partial x_j \partial x_i})_{x=0}$ for $1 \le i \le N$ and $1 \le j \le N$. Let $(s_j)_i$ be the i^{th} column of s_j . Then, since $h_{ij} = h_{ji}$,

$$S_{1}(D_{X}^{2}h)_{X=0} = \sum_{a_{1}=1}^{N} (s_{1})_{(a_{1}-1)N+a_{1}}^{h} a_{1}a_{1} + \sum_{a_{1}=1}^{N} \sum_{a_{2}=a_{1}+1}^{N} ((s_{1})_{(a_{1}-1)N+a_{2}}^{h} a_{1}a_{2} = d'.$$

Therefore, d' e span (Q), where

$$Q = \left(\begin{array}{ccc} N & N & N \\ U & U & U \\ a_1 = 1 & a_2 = a_1 + 1 \end{array} \right) \left\{ s(a_1 - 1)N + a_2 + s(a_2 - 1)N + a_1 \right\} U \left(\begin{array}{ccc} N & N \\ U & U \\ a_1 = 1 \end{array} \right) \left\{ s(a_1 - 1)N + a_1 \right\}.$$

Now consider the matrix S_1^* defined by

$$S_1' = {\circ}_{2!} S_1 = S_1(U_{12} + U_{21}).$$

It is easy to see that the $(a_1-1)N+a_2-th$ column of S_1

$$(s_1')_{(a_1-1)N+a_2} = \begin{cases} 2(s_1)_{(a_1-1)N+a_1}, & \text{if } a_1=a_2 \\ (s_1)_{(a_1-1)N+a_2}+(s_1)_{(a_2-1)N+a_1}, & \text{if } a_1\neq a_2 \end{cases}$$

where $1 \le a_1 \le N$ and $1 \le a_2 \le N$. Clearly Image $(S_1^i) = \text{span }(Q)$. Similar arguments can be applied for $(D_X^3 h)_{X=0}, \ldots, (D_X^{k+1} h)_{X=0}$. Therefore, de Image (B). (Q.E.D.)

1-87 DT/C